Machine learning unifies the modeling of materials and molecules Albert

نویسندگان

  • Albert P. Bartók
  • Sandip De
  • Carl Poelking
  • Noam Bernstein
  • James R. Kermode
  • Gábor Csányi
  • Michele Ceriotti
چکیده

Scientific Computing Department, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Oxfordshire OX11 0QX, UK. National Center for Computational Design and Discovery of Novel Materials (MARVEL), Lausanne, Switzerland. Laboratory of Computational Science and Modelling, Institute of Materials, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland. Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK. Center for Materials Physics and Technology, U.S. Naval Research Laboratory, Washington, DC 20375, USA. Warwick Centre for Predictive Modelling, School of Engineering, University of Warwick, Coventry CV4 7AL, UK. Engineering Laboratory, University of Cambridge, Cambridge, UK. *Corresponding author. Email: [email protected].

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Machine learning unifies the modeling of materials and molecules

Determining the stability of molecules and condensed phases is the cornerstone of atomistic modeling, underpinning our understanding of chemical and materials properties and transformations. We show that a machine-learning model, based on a local description of chemical environments and Bayesian statistical learning, provides a unified framework to predict atomic-scale properties. It captures t...

متن کامل

Add-on for High Throughput Screening in Material Discovery for Organic Electronics: “Tagging” Molecules to Address the Device Considerations

This work reflects the worth of intelligent modeling in controlling the nanostructure morphology in manufacturing organic bulk heterojunction (BHJ) solar cells. It suggests the idea of screening the pool of material design possibilities inspired by machine learning. To fulfill this goal, a set of experimental data on a BHJ solar cell with a donor structure of diketopyrrolopyrrole (DDP) and ...

متن کامل

Machine learning algorithms in air quality modeling

Modern studies in the field of environment science and engineering show that deterministic models struggle to capture the relationship between the concentration of atmospheric pollutants and their emission sources. The recent advances in statistical modeling based on machine learning approaches have emerged as solution to tackle these issues. It is a fact that, input variable type largely affec...

متن کامل

Modeling of Chloride Ion Separation by Nanofiltration Using Machine Learning Techniques

In this work, several machine learning techniques are presented for nanofiltration modeling. According to the results, specific errors are defined. The rejection due to Nanofiltration increases with pressure but decreases with increasing the concentration of chloride ion. Methods of machine learning represent the rejection of nanofiltration as a function of concentration, pH, pressure and also ...

متن کامل

Least Squares Support Vector Machine for Constitutive Modeling of Clay

Constitutive modeling of clay is an important research in geotechnical engineering. It is difficult to use precise mathematical expressions to approximate stress-strain relationship of clay. Artificial neural network (ANN) and support vector machine (SVM) have been successfully used in constitutive modeling of clay. However, generalization ability of ANN has some limitations, and application of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017